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Density-dependent potentials for simple metals 
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$ Division of Informatics, National Research Council of Canada, Ottawa K1A OR6, 
Canada 

Received 30 April 1990 

Abstract. We have calculated the total energy for a simple metal within pseudopotential 
theory to second order in the pseudopotential. Our work is based on a first-principles non- 
local pseudopotential. The results presented here contain an extra term accounting for the 
density dependence of the higher-order terms in the total energy. This term is required to 
equilibrate the system at the observed density and should be included in any low-order 
expansion of the total energy. A closed-form expression for the energy-wavenumber charac- 
teristic is given, from which the pair potential can readily beobtained by aFourier transform. 
Also included is a simple and accurate expression for the local field. which gives the electron 
gas screening. 

1. Introduction 

An important characteristic of a metal is that its properties are generally dominated by 
the conduction electrons. For example, the Coulomb repulsion between the ions is 
heavily screened by the conduction electrons, giving rise to relatively weak interatomic 
potentials. This characteristic is especially evident in the simple metals, i.e. metals whose 
conduction electrons are nearly free-electron-like. In such metals, the cohesive energy 
is derived almost entirely from the conduction electrons, the contribution of the 
interatomic interactions being typically one-tenth of the total cohesive energy. 

Owing to the presence of the conduction electrons, the approximation of density- 
independent pair potentials frequently used in molecular dynamics and Monte Carlo 
simulations breaks down. The extent to which this approximation is invalid is shown by 
the breakdown of the Cauchy relation, which states that, for a crystal in equilibrium 
under central forces alone, C12-C44 is zero, where C, refers to the elastic constants. 
Finnis (1974) has shown that, for a simple metal, CI2-C+, is determined by the density 
dependence of the total energy by deriving an explicit expression for this quantity in 
terms of the density derivatives of contributions to the total energy. The importance of 
the density dependence of the total energy in determining the structure of a metal has 
been discussed in the review by Heine and Weaire (1970). 

Because of the weak effective ion-electron interactions in the simple metals, the 
total energy can be treated by perturbation theory, with the homogeneous electron gas 
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as the unperturbed system. By going to second order in the strength of the ion-electron 
interaction, the total energy takes the form (Finnish 1974) 

where p is the conduction electron density, N is the number of ions, R ,  is the position 
of the mth ion and the prime on the summation excludes m = m‘. The ‘volume term’ U. 
and the effective pair potential cp are strongly dependent on p .  In this paper we discuss 
the volume and structural terms for a theory of interatomic interactions based on a non- 
local pseudopotential. We have generalized the paper by Finnis (1974) for the volume 
term to cover non-local pseudopotentials and have calculated the equilibrium volume, 
Q,, with linearly screened pseudopotentials whose parameters are obtained from first- 
principles theory. 

The motivation for this work is the influence of the density dependence of U. and cp 
on many phenomena in metals, such as structural phase transitions and grain boundary 
structures. The density variation may in the case of defects take place on an atomic 
scale. There are now simulation methods such as the variable cell molecular dynamics 
(Parrinello and Rahman 1980) where the density dependence can be allowed for. In this 
paper and the following paper (Walker and Taylor 1990), hereafter referred to as paper 
11, we provide expressions for U. and cp in forms that can easily be used in such schemes. 

An unexpected result is that our predicted Q0 is found to be considerably less than 
the observed value for simple metals. The origin of this discrepancy is discussed in 
section 4.1. There we show that an extra term U,, must be included in the total energy 
in order to represent the effect of the density dependence of the terms beyond second 
order in perturbation theory. We provide a simple expression for U,, where we use a 
single adjustable parameter, ,U, to achieve the observed Go. Here we give results for U,,, 
including this extra term for Li, Na, A1 and K.  

We have chosen non-local pseudopotential theory, despite the fact that the algebra 
is more complicated than for local pseudopotentials, for three reasons. The first reason 
is that it is often useful to compare how a given pseudopotential explains a variety of 
phenomena and most properties of metals cannot be well predicted by local pseudo- 
potentials. One example is the cohesive energy, which Chelikowsky (1981) has demon- 
strated is strongly sensitive to non-locality. Another case is electron transport (Taylor 
1982). For instance, the reduced thermopower is necessarily 3 or less for a local pseu- 
dopotential, whereas the experimental value for K (for which a local pseudopotential is 
normally considered adequate) is about 4 at high temperatures (Cook and Laubitz 1976). 

Secondly, for model local pseudopotentials, the parameters have to be fitted to some 
experimental property. In many cases, because the local pseudopotential does not 
adequately represent the electron-ion interaction, a pseudopotential fitted to one prop- 
erty needs readjustment for another. Manninen et a1 (1981) have overcome this dis- 
advantage by developing a scheme for ab initio calculations of interatomic potentials of 
simple metals with a local pseudopotential. We will discuss their scheme in section 4.2. 

Thirdly, a prime motivation for our calculation was the difficulty Walker et a1 (1986) 
hadin reproducing the structural phase diagram of Li. It is likely that the phase transitions 
are driven by the difference in the free energy between the two structures, which is 
controlled by the effective ion-ion interaction. The effective potential used by Walker 
et a1 (1986) was based on a local pseudopotential. The fact that it gives phonon dispersion 
curves that do not agree well with experiment (A B Walker, unpublished) suggests 
strongly that it may not accurately predict the dynamic behaviour of the system. In 
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the following paper, paper I1 (Walker and Taylor 1990), we derive a simple analytic 
representation for U0 and the interionic potential of Dagens, Rasolt and Taylor (DRT) 
(Rasolt and Taylor 1975, Dagens et a1 1975). The phonons from the DRT potential give 
excellent agreement with experiment, so we anticipate that the potentials described in 
paper 11 will overcome the problems experienced by Walker et a1 (1986) and Finnish and 
Sachdev (1976). 

The layout of our paper is as follows. In section 2 we derive an expression for the 
total energy to second order in the pseudopotential. Section 3 presents accurate analytic 
representations for the ‘local’ component FL(q)  of the energy-wavenumber charac- 
teristic F ( q ) ,  from which the effective pair potential is obtained. Our results for U,,, for 
Li, Na, A1 and Kareinsection4.1. Section4.2containsFL(q), the ‘non-local’component 
F N L ( q ) ,  F ( q )  and the pair potential calculated for Li, and the method of Manninen et a1 
(1981) is discussed. Our conclusions are in section 5. Appendix 1 contains the expansions 
for F ( q ) ,  and finally, in appendix 2 we give expressions for the local field based on the 
analysis by Vosko et a1 (1980). 

2. The total energy 

In this section we derive expressions for the total energy for a system of ions and 
conduction electrons to second order in the pseudopotential governing electron-ion 
interactions. Our theory uses the formulation of Rasolt and Taylor (1975), hereafter 
referred to as RT, to find an expression for the volume term Uo, which is given here for 
the first time for non-local pseudopotentials. We show that our expression for U0 is 
identical to that derived by Finnis (1974) for a local pseudopotential except for an 
additional term, UNL, and the way in which the terms involving the pseudopotential are 
calculated. 

The total energy per ion of N ions of charge 2 in units of the electronic charge e in a 
volume R is given by 

- (1/N)/ uxc(n)n(r)dr + (0 .5Z2/N)  2’ I d  rd r’ U , (  It- r’ I) [ 6(r -Rm) 

where 8 ( x )  is the unit step function and kF is the Fermi wavevector. The Ek are the energy 
eigenvalues for the electron gas of density n(r) with a uniform positive background of 
density no = N Z / Q  and n(r) = n(r) - no. The term Exc is the exchange-correlation 
functional, uxc(n) = ( 1/R)6Exc[n]/6n is the exchange-correlation potential, and the 
Coulomb potential u,(r) = e2/(4n&or) (e is the electron charge and is the vacuum 
permittivity). The third and fourth terms are subtracted to avoid double counting 
electron-electron interactions. Ion-ion Coulomb interactions are represented in the 
final term, taking into account the uniform positive background. 
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From the theory presented in RT, Ek is the eigenvalue for the total energy comprising 
the kinetic energy operator T and the potential VT representing electron-electron and 
electron-ion interactions; thus 

( T S  VT)IQ)k) = EklQ)k)  (2.2) 

(2.3) 

where 1Q)k) is the eigenstate of momentum k ,  

(rl Tlr’)  = -[h2V2/(2m)] Q S ( r  - r ’ )  

(rlVTlr’) = 2 up(‘ - R,, r’  - R,) (1 n(r”)u,(lr - r”l) dr” + uxc(n)) Q6(r - r ’ ) .  
m 

(2.4) 

Here u p  is the non-local pseudopotential operator and m is the electron mass. 
To second order in V T ,  

Ek = &k f (klVTlk) + e’ / ( k I V T l k  + q)/*/(&k - & k + q )  (2.5) 
4 

where &k = h2k2/(2m) and the prime on the summation implies exclusion of q = 0.  
Therefore 

Ek= &k+ lim(klS(q)up + Zu,(q) lk+ q)  
4- 0 

+ e’ l(klS(q)uplk + 9) + n(qQuc(q) + 2n(q)Kxc(f?>i2/(&k - Ek+J. 
4 (2.6) 

Here is the Fermi energy, the exchange correlation kernel Kxc(r,  r ’ )  = (1/ 
Q)d2Exc[n] /6n(r )6n(r’ )  and S(q) = X exp(-iq Rm), where the sum is over lattice 
sites R,. The second term in equation (2.6) contains a contribution Zuc(q) ,  which 
compensates for the fact that the uniform charge background is already included in the 
zeroth-order term. We use the following formulae to simplify equation (2.1): 

1/x(4)  = l /no(4)  + Quc(q) + 2Kxdq) (2.7) 

(Geldart er al1972) where x is the susceptibility, the free-electron polarizability 

and 

Exc[n] = Exc[no] + (0.5/Q) I Kxc(r,  r’)n(r)n(r’)  drdr’ .  

Also, from RT, 

where 

(2.9) 

(2.10) 

(2.11) 
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Up is a weighted average of the electron-ion matrix elements (Taylor and Macdonald 
1980). Similarly we define 

$= - (4 /n0Q)  / ( k  + qluplk)/2/(Ek - &k+q). (2.12) 
k 

From equations (2.1) to (2.12), we obtain 

Utot = 0 . 6 2 ~ ~  + ( ~ / N ) J ~ x c [ ~ o ]  + lim 2 e ( k  - k)(k/[S(q)/N]u,Ik) 
9-0 i k 

+ 0.522[uc(q) + ~ ( q ) U c ( q ) l )  + 0 . 5 ( ~ 2 / ~ )  E ' uc( lRm - R m ,  I) 
m,m' 

- O.5(Z2/N)  e IS(q)l2F(q)~c(!7) (2.13) 
9 

where the energy-wavenumber characteristic 

F ( q )  = m q )  + F N L ( q )  (2.14) 

for 

FL(q) = (fiJ2xQ;Z/(Z2uc) (2.15) 

and 

F N L ( q )  = [Z - (fip>21QnO/(z2uc) (2.16) 

(Taylor and MacDonald 1980). By adding and subtracting limfi,(q) from the third 

(2.17) 

term in equation (2.13), our final result for Utot is then 9- fJ 

UtOt (P> = U"(P) + U&) 
where 

UO(P> = UL + UNL (2.18) 

(2.19) 

(2.20) 

(2.21) 

3. The energy-wavenumber characteristic 

(2.23) 

(2.24) 

In this section we derive an accurate analytic representation of FL(q)  from its behaviour 
at small and large q. Since FL(q)  dominates the effective pair potential, as demonstrated 
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for Li in section 4.2, these expressions will provide a means of generating an accurate 
pair potential via equation (2.24) as an alternative to the form for Q, derived in paper 11. 

Whilst the theory presented in section 2 is valid for any energy-independent 
pseudopotential, we have used a Heine-Abarenkov pseudopotential for the analytical 
results presented in this paper and paper 11, viz. 

up  = -Zu,(r) + O(R, - r )[u , ( r )  + A 2  + ( A ,  - A 2 ) P ,  + ( A ,  - A2)Pl ] .  (3.1) 
Here P, is the angular momentum projection operator for angular momentum 1. Note 
that we have used the Heine-Abarenkov form of pseudopotential in both this paper and 
paper I1 to present analytical results (section 3) and numerical results (section 4) because 
these results are simpler than they would be for other model pseudopotentials. Fur- 
thermore, the Li pseudopotential of Dagens et a1 (1975)-for which further results are 
presented in paper II-adopts the Heine-Abarenkov form, obtaining the values of the 
parameterSA, (i = 0,1,2)  and RM from a first-principles calculation described in section 
4.1. However, our fitting procedures will work for any form of linearly screened pseu- 
dopotential and do not rely on a Heine-Abarenkov pseudopotential. 

We have found a simple analytic expression for FL(q)  by writing it in terms of the 
non-local integrals Lo and L l  defined in appendix 1. The expressions were obtained by 
interpolation between expansions of the integrals at low q and high q in powers of q’2 
and l/q”, respectively, where q’ = q/kF. Since these expansions are also used to find a 
pair potential derived from F ( q ) ,  as discussed in paper 11, we have given them in appendix 
1. Inserting (3.1) into (2.11) and using the symmetrization and transformation-of- 
variables technique described in section I11 of RT, we find that 

fip/[zuC(q)l = ML(q) + qr2(au0~, + 3a1L1) ( 3 4  

M L ( q )  = A;R’ sin(q’R‘)/(q’R’) - (Ail?’ + 1) cos(q’R’) (3.3) 

A :  = A , / [ Z e 2  kF/(4n&”)] i = 0 , 1 , 2  R’ = RMkF (3.4) 

a, = A :  - A $ .  (3.5) 

where 

Using (2.12) a similar expression can be derived for q. From this expression and from 
equations (3.2)-(3.5), (2.15) and (2.16), 

FL(q) = z*Qu&>x(s>[ML(q) + 4’%%L” + 3 a , L ) I 2  

FNL((1) = z2~~, (4>no(q)q’“~~[~”” - (L”)’] + 6 ~ ” ~ I ( ~ ” l  - L J I )  
(3.6) 

+ 9aI[L11 - ( L ~ > ’ I >  (3.7) 
where the non-local integrals Lo,  L1, LOO, Lo, and Ll l  are given by equations (Al.1)- 
(A1.8) and following sentence in appendix 1. These integrals have to be evaluated 
numerically, which can be very time-consuming if one constantly has to re-evaluate the 
pair potential at different densities. By examining the small- and large-q expansions of 
the most significant of the integrals, Lo and L we have obtained the following analytical 
representations of them: 
- 
Lo = -sf{3j,(q’R’)/(q’R’) + h(q ’R’ )  + i~(~’R‘)go(q’>lgo(q‘>)/4 
L1 = -[s’/4 + R’*j1(q’R’)jo(q’R‘)] [3jl(q’R’)/(q’R’) + 2X/3] + s’X/12 

(3.8) 

(3.9) 
- 

where 
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x = Ci2(q’R’) + [q’R’j,(q’R’)/2 + j4(4’R’)go(4’)18O(4’)}8O(4’) 
s’ = sin(2R’) - 2R’ 

go(@) = [2 - fo(4’>lfo(q’> 
and fo(q’)  is the Lindhard function, i.e. 

(3.10) 

(3.11) 

(3.12) 

fo(x) = 2 + (1 - x*)[log/(l  + x)/(l - x>Il/(4x). (3.13) 

The functions j i (q)  are the spherical Bessel functions of order i. Equations (3.8) and 
(3.9) are exact in the small- and large-q limits and accurate to better than 1.5% of the 
q = 0 value, except for a small range of q values near q = 2kF in the case of Lo,  where 
the errors are still less than 3%. The zeros in both functions are correctly reproduced by 
equations (3.8) and (3.9). 

4. Results 

4.1. Total energy 

Table 1 lists the contributions to the total energy as a function of density p in units of the 
equilibrium density po for Li, Na, A1 and K. In the table U ,  represents the contribution 
to the total energy that would be present for a local pseudopotential, UN, is the term 
that is purely due to non-local effects, U. is the volume term, U I I  is the structure term, 
U,,, is the total energy from pseudopotential theory (equation (2.17)), UHO is the 
correction term due to the density dependence of terms beyond second order in the 
pseudopotential (and is discussed below) and U,,, is the total energy including UHO. Thus 

U,,, = U ,  + U,, 

where f i o  is the corrected volume term, i.e. 

& = U0 + U H O .  ( 4 4  

All the numbers in the tables and the figures were found using the first-principles 
pseudopotentials and lattice constants specified in Dagens et a1 (1975) except for Na 
where the corrected pseudopotential parameters of Cohen et a1 (1976) were used and 
for Li where the lattice parameter of 4.382 A in the FCC phase (equivalent to 3.478 A for 
the BCC lattice at low temperatures (Beg and Nielsen 1976)) was used. 

U. was evaluated from equation (2.18) using the following procedure. The electron- 
gas terms in U, (equation (2.19)) were calculated from the formalism presented in 
appendix 2 where the expressions of Vosko et a1 (1980) were used for the local field 
although the approximate expression given in equation (A2.4) would give almost pre- 
cisely the same result. The band-structure term UBS was found from the expression for 
F ( q )  given in section 3, equations (3.2)-(3.7), using the definitions of the non-local 
integrals given in appendix 1, equations (Al.l)-(A1.8). U,, (equation (2.22)) was 
calculated from Up, which is given in terms of the non-local integrals in equation (3.2). 
Here also the non-local integrals were evaluated from their definitions in (Al .  1)-(A1 .8). 
Tofind U,, (equation (2.23)), weusedequation (2.24)for thepairpotential andevaluated 
F ( q )  using the formalism described above. 

Table 1 shows clearly that the structural term, UII, is about one-tenth of the total 
energy, as pointed out in the introduction. The non-local term UN, is the same order of 
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Table 1. contributions to the total energy per ion, U,,,, as a function of density in units of the 
zero-temperature equilibrium density, pO. The structure, equilibrium lattice constant a and 
pseudopotential parameters (where A, are the well depths in rydbergs and R, the well radii 
in atomic units) assumed for each metal are indicated at the head of each part of the table. 
See text (section 4.1) for definitions of each contribution. All energies are in eV.  

( a )L i th ium,L i :~cc , a=4 .382A,A,=  - 0 . 7 0 , A l = A 2 =  -1 .32 ,R l=  R2=2.38 .  

PIP0 U L  

0.80 
0.90 
0.95 
0.98 
0.99 
1 .00 
1.01 
1.02 
1.05 
1.10 
1.20 
1.30 
1.40 
1 .50 
1.60 
1.70 
1.80 
1.90 
2.00 

- 7.6028 
-7.7342 
- 7.7976 
-7.8351 
-7.8475 
- 7.8598 
- 7.8723 
-7.8845 
- 7.9210 
- 7.9809 
- 8.0976 
-8.2106 
-8.3202 
-8.4265 
-8.5296 
-8.6300 
- 8.7275 
- 8.8224 
- 8.9147 

0.2915 
0.3480 
0.3772 
0.3951 
0.4011 
0.4071 
0.4132 
0.4193 
0.4376 
0.4687 
0.5324 
0.5982 
0.6657 
0.7348 
0.8054 
0.8773 
0.9504 
1.0246 
1.0997 

-7.3113 
- 7.3862 
-7.4204 
- 7.4400 
-7.4464 
-7.4527 
-7.4591 
- 7.4652 
-7.4834 
-7.5 122 
-7.5652 
-7.6124 
-7.6545 
-7.6917 
-7.7242 
-7.7527 
-7.7771 
- 7.7979 
-7.8150 

- 0.4037 
-0.4175 
-0.4212 
-0.4225 
-0.4228 
- 0.4230 
-0.423 1 
-0.4232 
- 0.423 1 
-0.4217 
-0.4150 
-0.4037 
-0.3887 
-0.3706 
-0.3499 
-0.3270 
- 0.3023 
-0.2760 
-0.2485 

-7.7151 
- 7.8037 
-7.8415 
-7.8625 
- 7.8692 
-7.8757 
-7.8822 
-7.8885 
- 7.9065 
-7.9339 
- 7.9801 
-8.0161 
- 8.0432 
-8.0623 
-8.0741 
-8.0797 
-8.0794 
-8.0739 
-8.0634 

-0.1307 
-0.0653 
- 0.0327 
-0.0131 
-0.0065 

0.0000 
0.0065 
0.0131 
0.0327 
0.0653 
0.1307 
0.1960 
0.2614 
0.3268 
0.3921 
0.4575 
0.5229 
0.5882 
0.6536 

-7.8458 
-7.8691 
-7.8742 
-7.8756 
-7.8757 
-7.8757 
-7.8757 
-7.8754 
-7.8738 
-7.8686 
-7.8495 
-7.8201 
-7.7818 
-7.7355 
- 7.6820 
- 7.6222 
-7.5565 
-7.4857 
- 7.4099 

( b ) S o d i u m , N a : ~ c c , a = 4 . 2 2 7 A , A , , = A , =  -0.255,A2= -0.50,Ro= 1.87,R1 = R 2 =  
1.93. 

0.80 
0.90 
0.95 
0.98 
0.99 
1 .00 
1.01 
1.02 
1.05 
1.10 
1.20 
1.30 
1.40 
1 .50 
1.60 
1.70 
1.80 
1.90 
2.00 

-6.5870 
-6.6494 
-6.6786 
-6.6955 
-6.7011 
- 6.7066 
-6.7121 
-6.7175 
-6.7336 
- 6.7596 
-6.8090 
-6.8556 
- 6.8996 
- 6.94 14 
- 6.9812 
-7.0192 
-7.0556 
- 7.0906 
-7.1241 

-0.0070 
-0.0083 
-0.0090 
- 0.0094 
- 0.0096 
- 0.0097 
-0.0099 
- 0.01 00 
- 0.01 04 
-0.0111 
-0.0126 
-0.0141 
-0.0156 
-0.0172 
-0.0187 
-0.0203 
- 0.0219 
-0.0235 
-0.0250 

- 6.5940 
- 6.6578 
- 6.6876 
- 6.7050 
- 6.7107 
- 6.7163 
-6.7220 
-6.7275 
-6.7440 
- 6.7707 
-6.8216 
-6.8697 
-6.9152 
- 6.9585 
-6.9999 
-7.0395 
- 7.0774 
-7.1140 
-7.1491 

-0.1916 
-0.1863 
-0.1785 
-0.1722 
-0.1699 
-0.1674 
-0.1649 
-0.1622 
-0.1534 
-0.1364 
- 0.0943 
-0.0421 

0.0194 
0.0895 
0.1675 
0.2529 
0.3452 
0.4440 
0.5487 

-6.7857 
-6.8441 
-6.8661 
- 6.8772 
- 6.8806 
-6.8838 
-6.8868 
-6.8897 
-6.8974 
- 6.9071 
-6.9159 
-6.9118 
-6.8958 
-6.8690 
-6.8324 
-6.7865 
-6.7322 
- 6.6700 
- 6.6004 

- 0.0625 
-0.0312 
-0.0156 
-0.0063 
- 0.003 1 

0.0000 
0.0031 
0.0062 
0.0156 
0.0312 
0.0625 
0.0937 
0.1250 
0.1562 
0.1875 
0.2187 
0.2500 
0.2812 
0.3124 

~ 

-6.8482 
-6.8753 
-6.8817 
-6.8835 
-6.8837 
-6.8838 
- 6.8837 
-6.8834 
-6.8817 
- 6.8759 
- 6.8535 
-6.8180 
-6.7708 
-6.7128 
- 6.6449 
-6.5678 
- 6.4823 
-6.3888 
- 6.2880 
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Table I-continued. 

( c )  Aluminium, AI: FCC, a = 4.033 A ,  A. = A ,  = -2.22, A 2  = -6.70, Ro = 1.45, R ,  = 
R 2  = 1.31. 

PIP0 UL U h  L un UII U,,, U,,  fJt01 

0.80 -59.2561 0.3984 -58.8577 0.1166 -58.7410 -0.2348 -58.9759 
0.90 -59.6221 0.4848 -59.1374 0.1841 -58.9533 -0.1174 -59.0708 
0.95 -59.7960 0.5304 -59.2656 0.2295 -59.0361 -0.0587 -59.0948 
0.98 -59.8958 0.5586 -59.3373 0.2605 -59.0768 -0.0235 -59.1003 
0.99 -59.9298 0.5681 -59.3617 0.2716 -59.0901 -0.0117 -59.1019 
1.00 -59.9623 0.5777 -59.3846 0.2829 -59.1018 0.0000 -59.1018 
1.01 -59.9955 0.5873 -59.4082 0.2945 -59.1136 0.0118 -59.1018 
1.02 -60.0271 0.5970 -59.4301 0.3064 -59.1236 0.0235 -59.1002 
1.05 -60.1238 0.6265 -59.4972 0.3443 -59.1530 0.0587 -59.0942 
1.10 -60.2789 0.6769 -59.6019 0.4136 -59.1884 0.1174 -59.0710 
1.20 -60,5755 0.7823 -59.7931 0.5763 -59.2168 0.2348 -58.9820 
1.30 -60.8499 0.8937 -59.9562 0.7700 -59.1862 0.3522 -58.8340 
1.40 -61.1117 1.0108 -60.1009 0.9959 -59.1050 0.4697 -58.6353 
1.50 -61.3572 1.1335 -60.2237 1.2524 -58.9713 0.5870 -58.3843 
1.60 -61.5897 1.2617 -60.3280 1.5393 -58.7887 0.7044 -58.0842 
1.70 -61.8093 1.3952 -60.4141 1.8558 -58.5583 0.8219 -57.7364 
1.80 -62.0170 1.5339 -60.4830 2.2009 -58.2822 0.9393 -57.3429 
1.90 -62.2128 1.6777 -60.5351 2.5734 -57.9616 1.0567 -56.9049 
2.00 -62.3985 1.8265 -60.5720 2.9734 -57.5986 1.1741 -56.4245 

( d )  Potassium, K:  BCC,a  = 5.233 A , A , ,  = A ,  = -0.32,A2 = -1.80, R,, = 2.65, R ,  = R 2  = 
3.08. 

0.80 
0.90 
0.95 
0.98 
0.99 
1.00 
1.01 
1.02 
1 .os 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

-5.4940 
- 5.550 1 
-5.5770 
- 5,5927 
-5.5979 
-5.6033 
-5.6084 
-5.6136 
-5.6291 
-5.6547 
-5.7050 
- 5.7543 
- 5,8030 
-5.8519 
-5.8999 
-5.9484 
- 5.9966 
- 6.045 1 
-6.0941 

-0.0133 
-0.0126 
-0.0119 
-0.0113 
-0.0111 
-0.0109 
- 0.0107 
-0.0105 
- 0.0097 
-0.0083 
- 0,0046 

0.0002 
0.0061 
0.0132 
0.0214 
0.0309 
0.0416 
0.0536 
0.0668 

-5.5073 
- 5,5627 
-5.5888 
-5.6040 
- 5.6091 
- 5.6142 
-5.6191 
-5.6241 
- 5.6389 
-5.6629 
-5.7096 
-5 7541 
- 5.7969 
- 5.8387 
-5.8785 
-5.9175 
-5.9550 
-5.9915 
- 6.0273 

-0.1896 
-0.1891 
-0.1837 
-0.1790 
-0.1772 
-0.1753 
-0.1733 
-0.1711 
-0.1640 
-0.1499 
-0.1142 
-0.0690 
-0.0156 

0.0453 
0.1130 
0.1866 
0.2658 
0.3498 
0.4380 

-5.6969 
-5.7517 
-5.7725 
-5.7830 
-5.7863 
-5.7895 
-5.7924 
-5.7952 
-5.8028 
-5.8128 
-5.8238 
-5.8231 
-5.8125 
-5.7934 
-5.7655 
-5.7309 
-5.6892 
- 5.6417 
- 5.5893 

- 0.0610 
- 0,0305 
-0.0152 
-0.0061 
-0.0031 

0.0000 
0.0030 
0.0061 
0.0152 
0.0305 
0.0610 
0.0914 
0.1219 
0.1524 
0.1828 
0.2134 
0.2438 
0.2743 
0.3048 

~ 

-5.7579 
-5.7822 
- 5.7878 
-5.7891 
-5.7893 
-5.7895 
-5.7893 
-5.7891 
-5.7876 
-5.7824 
-5.7628 
-5.7317 
-5.6906 
-5.6410 
- 5.5826 
- 5 .5 175 
-5.4454 
-5.3674 
-5.2845 
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Table 2. Contributions to the total energy of AI per ion, U", U,, and U,,,, as functions of 
density when the pseudopotential well depths are varied with the density. The energies are 
in eV.  The columns headed A,,  A I and A 2  are the well depths in rydbergs. 

0.96 2.236 2.236 6.750 -59.3410 0.2411 -59.0999 
0.98 2.228 2.228 6.725 -59.3630 0.2613 -59.1018 
1.00 2.220 2.220 6.700 -59.3846 0.2829 -59.1018 
1.02 2.212 2.212 6.675 -59.4059 0.3059 -59.1000 
1.04 2.204 2.204 6.650 -59.4267 0.3303 -59.0964 

magnitude as U,, and increases rapidly with density, so that it will make a significant 
contribution to the pressure. The results for U,,, in table 1 show that the minimum in 
U,,, occurs at p /po  = 1.7 for Li and p/po  = 1.2 for Na, A1 and K. In all cases the densities 
are much higher than the observed low-temperature values. This disagreement is sur- 
prising in view of the fact that the calculation is entirely first-principles and that our 
formalism includes important details such as the non-local pseudopotential contribution 
to U,,. We believe that the origin of this discrepancy is the density dependence of 
terms in the total energy beyond second order in the pseudopotential. In the following 
paragraphs we explain how the discrepancy arises in the context of the DRT pseudo- 
potential and why there will be similar difficulties for all pseudopotential calculations 
that only go to second order. 

For the DRT pseudopotential, the high-order terms in the total energy are important 
because of the way in which the pseudopotential parameters were derived. This is briefly 
as follows. First of all, the charge density induced around an isolated ion in an infinite 
electron gaswas calculated self-consistently from density-functional theory. Here the 
density of the electron gas corresponded to the observed zero-temperature value for the 
metal. Then the same quantity was evaluated to first order in perturbation theory 
using a pseudopotential formally equivalent to the full ionic potential used in the first 
calculation. Finally, the pseudopotential parameters were adjusted so as to bring the 
first-order calculation into coincidence with the full non-linear calculation. The idea was 
to force the perturbation theory approach to reproduce the correct isolated-ion charge 
density. By doing this, the effect of an entire series of higher-order terms non-linear in 
the charge density was folded into the pseudopotential parameters. Clearly, in principle 
the DRT pseudopotential parameters must depend on the density of the electron gas. 
However, it was always argued that this effect would be negligibly small and could 
hence be ignored. The successful prediction of the temperature dependence of electron 
transport properties, phonons and defect behaviour (e.g. Taylor 1982, Jacucci et a1 
1981) appeared to vindicate this assumption. Nevertheless, we find that the density 
dependence of total energy is in fact sensitive to the density dependence of the pseudo- 
potential parameters from the higher non-linear corrections that have been folded into 
them. 

In table 2 we present results for U o ,  UII and U,,, for 0.96 d p/po  S 1.04 for A1 by 
allowing the pseudopotential wells to deepen by 0.37% for every 2% decrease in the 
density. The pseudopotential well depths used are also included in the table. As can be 
seen, the very small changes in the pseudopotential as a function of the density are 
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Table 3. Values of p for Li, Na,  AI and K.  

949 1 

Li Na AI K 

P 0.0777 0.0451 0.1285 0.0545 

sufficient to equilibrate the system at the correct density. Particularly interesting is the 
fact that a comparison with table l ( c ) ,  where there is no density dependence in the 
pseudopotential, shows that the change in U. is more than an order of magnitude larger 
than the change in UI,. We conclude that the size of the density dependence of the 
pseudopotential needed to achieve equilibrium is too small to have any impact on the 
pair potential and hence the pair potential can be calculated with density-independent 
pseudopotential parameters. 

It is beyond the scope of this paper to repeat the DRTcalculations at different electron- 
gas densities, so we have no way of estimating the magnitude of the density dependence 
of the DRT pseudopotential parameters. We can, however, obtain a rough guess from 
the fact that the difference between linear and non-hear  charge densities calculated by 
DRT for Al, Mg, Na and K (all of which have similar core structures) appears to increase 
steadily with decreasing electron density. Such behaviour is not surprising since the 
kinetic energy becomes less and less dominant with decreasing density, so that the 
pseudopotential parameters would have to be strengthened as the density decreases. 
This concurs with the results in table 2. 

Rather than find the exact density dependence of the pseudopotential parameters to 
achieve the observed low-temperature equilibrium volume, we can utilize the fact that 
only the density dependence of the volume term U. is significantly affected by the 
changes in the pseudopotential parameters. Hence we can simply add a correction term 
UHO to U", which takes the form 

UHO = pze2 (P/PO -1)/(4n&OrWS)* (4.3) 

Here rws is the Wigner-Seitz sphere radius and p is a dimensionless parameter adjusted 
to give the correct equilibrium density. We have chosen this form because of its very 
simple density dependence and because Z e 2 / ( 4 n ~ o r w s )  is a natural energy unit of the 
system. The value of p is fixed to force the derivative of U,,, with respect to the density 
to be zero at p/po = 1 ,  where U,,, is defined in equations (4.1) and (4.2) above. U,,, is 
shown as the final column table 1 and the values of p for Li, Na, A1 and K are given in 
table 3. 

Finally in this subsection, we emphasize that we would expect that a term like UHo 
would have to be added to U. for all pseudopotential calculations of the total energy to 
second order in pseudopotential theory. Any pseudopotential fitted to an experimental 
property would have implicitly the same non-linearities as discussed in the context 
of the DRT potential folded into it. Furthermore, any first-principles pseudopotential 
calculation that explicitly ignored the effect of the higher-order terms would again need 
a correction term to equilibrate the system at the observed volume. Note, for example, 
that Cagin and Ray (1988) included such a correction without any formal justification. 
It follows, then, that to determine pseudopotential parameters by fitting to the observed 
equilibrium density is likely to lead to other properties not agreeing with experiment. 
This is indeed the case for the local pseudopotential of Walker et a1 (1986), which was 
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Figure 1. Contributions to the energy-wavenumber characteristic F ( q )  for Li. The local and 
non-local contributions, F,(q) and FNL(q) respectively, are defined in equations (2.14)- 
(2.16). The wavevector q is in units of 2z/a = 0.782kF, where a is the low-temperature 
equilibrium lattice constant for FCC. 

fitted to the equilibrium density of Li and gives poor phonon dispersion curves (A B 
Walker, unpublished). 

4.2.  Energy-wavenumber characteristic 

We would expect Li to be strongly non-local due to the lack of occupied p states in the 
Li core. In that case, valence electrons in p states will experience the full attractive 
potential from the ion core as they are not orthogonal to the s-state core electrons. 
Therefore Li is a good test of the importance of non-locality and accordingly all the 
calculations in this section have been made for Li. We have plotted FL(q), FNL(q) and 
F(q)  in figure 1. To obtain these curves we have used the formalism described in section 
4.1. Figure 1 shows that &(q) dominates &t wavevectors around 2kF and will therefore 
contribute to long-range oseillations in n(q).  Reproducing these oscillations in n(q) by 
fixing the local pseudopotential within an analytic form for the latter is likely to result in 
a poor description of the transport properties (Taylor 1982). Nevertheless, this does not 
preclude the possibility that the pair potential is adequately described by the approxi- 
mation that 

For a local pseudopotential the matrix element (klu,lk + q )  is independent of k. There- 
fore, from equations (2.11) and (2 .12) ,  $ is equal to ( v , ) ~  and so &(q) is zero. 
Manninen et a l ( l 9 8 1 )  define a local pseudopotential v p ( q )  from the equation 

4 s )  = - v,(q)x(C7)S(q) (4.5) 

where n(q) is obtained from a self-consistent calculation of the electron density around 
an isolated A1 nucleus, embedded, in different schemes, in jellium and in a jellium 
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Figure 2. Contributions to the effective pair potential q for Li. The resulting pair potentials 
if F(9)  = F,(q) or F ( q )  = FNL(q), namely qL and qNL respectively, are also shown. The 
distance r is given in units of the low-temperature equilibrium lattice constant a for FCC, i.e. 
4.382 A. 

vacancy. Figure 2 shows q ( r ,  p )  for Li evaluated from equation (2.24) at the standard 
density po, where the full curve is for F ( q )  from equation (2.14), the dotted curve from 
equation (4.4) and the broken curve with F(q)  set equal to FNL(q)  and u,(r) = 0. The 
broken curve represents only the non-local contribution to q ( r ,  p ) .  The same parameter 
values and lattice constant as for figure 1 have been adopted. From figure 2 it is apparent 
that the approximation (4.4) is a good one even for Li. Thus, any properties that depend 
on the pair potential, such as the phonon dispersion curves, are likely to be well described 
by a local pseudopotential obtained by Manninen et al‘s (1981) precription. 

If a local pseudopotential is used, it should be chosen carefully. Manninen et al’s 
(1981) prescription works for the pair potential because their local pseudopotential 
reproduces the non-linear charge density around an isolated ion and so, like the 
pseudopotentials of Dagens et a1 (1975), has non-linear effects in the response of 
conduction electrons to ionic perturbations folded in. Note that the functional form of 
F(q)  is considerably more complex than that which is generated by an analytic local 
pseudopotential. 

5. Summary and conclusions 

Within second-order pseudopotential theory, the total energy U,,, of a simple metal may 
be written as the sum of a ‘volume term’ Uo, which depends only on the density p of the 
system, and a structure-dependent term UII, which is itself a sum over density-dependent 
pair potentials q ( r ,  p) .  We have evaluated U,,, for Li, Na, A1 and K using the first- 
principles pseudopotentials of Dagens et a1 (1975), which are constructed to give the 
correct non-linear charge density for an isolated ion in an infinite electron gas when used 
to first order in perturbation theory. Our derivation of U&) goes beyond that of Finnis 
(1974) since it includes an extra term due to the non-locality of the pseudopotential 
(equation (2.22)). 
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Even with this extra term, we still find that the system equilibrates to a density much 
higher than observed. We have argued that the origin of this discrepancy lies in the 
neglect of the density dependence of the higher-than-second-order terms in the total 
energy, and have shown that a weak density dependence in the pseudopotential is 
necessary to equilibrate the system at the right density. Of particular importance is the 
fact that this density dependence has a much bigger impact on U&) than on UII(p), 
thereby justifying the neglect of this effect when calculating pair potentials at different 
densities. An extra term, UHo (equations (4.1)-(4.3)), is included in U. with acoefficient 
adjusted to give the observed equilibrium density, to account for the density dependence 
of the higher-order terms. It should be noted that such a term is required in all cases 
where the total energy is calculated to second order in the pseudopotential. 

The density dependence of U0(p> and q ( r ,  p)  is of critical importance in simulations 
of simple metal properties with the Parrinello and Rahman (1980) variable cell molecular 
dynamics scheme. To evaluate q ( r ,  p )  at different densities within that scheme would 
require large amounts of computer time, particularly since the non-local pseudopotential 
formulation of the pair potential involves several complicated multidimensional 
integrals. Consequently, in the following paper, paper 11, we have fitted the potentials 
generated in this paper to a simple analytic form suitable for such a simulation. We have 
also provided small- and large-q expansions of the integrals (see appendix 1) as well as 
analytic representations of the most important of them, Lo and L ,  (equations (3.8)- 
(3.13)). 

Another important simplification in the evaluation of q ( r , p )  is to use the local 
density approximation for the local field of the electron-gas dielectric function (Taylor 
1978). In appendix 2 we have provided an improved local field (equation (A2.4)) over 
that suggested by Taylor (1978). This is based on the Vosko et a1 (1980) interpolation 
formula for the Ceperley and Alder (1980) results for the correlation energy of the 
electron gas. 

Finally, we have noted that the energy-wavenumber characteristic, F ( q ) ,  can be 
written as the sum of two terms, FL(q)  and FNL(q), where the latter is identically zero 
for a local pseudopotential. This result justifies the approach of Manninen et a1 (1981), 
who determined a pair potential directly from the isolated-ion charge density in an 
electron gas without going through the intermediate stage of constructing an analytic 
pseudopotential. We have pointed out that FL(q)  is considerably more complex than the 
form that is derived from an analytic local pseudopotential. 
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Appendix 1. Expansions for non-local integrals and F(q) 

Here we list the expressions for the non-local integrals L, and Lij, where i ,  j = 0, 1, 
which appear in the local (FL(q) )  and non-local (FNL(q)) components of the energy- 
wavenumber characteristic, equations (3.6) and (3.7). We also give the expansions of 



Density -dependent potentials for simple metals 9495 

these integrals in powers of 4’’ and l /q t2  (4’ = q/kF). The expansions for Lo and Ll are 
also used to generate the analytic representations of these functions discussed in section 
3, and to fit a Pade approximant to F(q) from which we have obtained an analytic 
expression for the effective pair potential and the band-structure term in U, (see paper 
11). 

The definitions of the non-local integrals are as follows: for q’ s 2 
1 

Li = (l/fo) 1 dx/x lo1 dt  k ’ K i ( k ; ,  k’ ,  R’) [k, - k-/(k,k-)]’ 
0 

k‘ = (t - 1)q’x + [ l  - q t 2 ( x 2  - 1)/4]”2 

and for q‘ 3 2 

( A l . l )  

(A1.2) 

1 I 

Li=[2/(foq’)]/ dx[l+q’2(x2-1)/4]1~2/ dtk’K,(k; ,kl .  ,R’)[k+.k-/(k+k-)]’  
0 XM 

(Al.3) 

(A1.4) k‘ = q’x/2 + (2t - 1)[1 - q r 2 ( x 2  - 1)/4]’12. 

Here 

ki = k‘ 2 q’/2 = k,/kF (A1.5) 

x M =  ( l  -4/q ’ 2  112 (A1.6) 

Ko(kl ,  k 2 ,  R) = [sin(k2R) cos(klR)/k2 - sin(klR) cos(k2R)/kl]/(ki - k : )  (A1.7) 

K l (k l ,  k 2 ,  R) = R[jl(k2R) sin(klR) - j d k l R )  sin(k2R)l/(k2, - k 3  (A1.8) 

where j l ( x )  is the spherical Bessel function of order 1. The non-local integrals Lii are 
defined in a similar way to Li except that K , ( k ; ,  k ‘ ,  R’)[k, k-/(k+k-)]‘  is replaced 
by K , ( k ; ,  k ’ ,  R’)Kj(k;, k’ ,  R’) [k+ - k_/(k,k-)]’+j in the integrands. 

For low q we have obtained the expansions below. Here ci = cos(iR’), si = sin(iR’), 
c’ = c2 - 1 and s’ = s2 - 2R‘. If x = q”, 

Lo = Eo(i)x’ = - ~ ’ / 4  + x[(R” - 3)s’ + 2R’~’]/72 - x2[(9Rt4 - 106R” 
i 

+ 165)s’ - 158R’c’ + Rr3(36c’ - 96)]/21600 (A1.9) 

L ,  - = E,(i)xi = x[(3s’ - 2~‘R’ )~ ] /576  
i 

+ x2{(224Rr4 - 3828Rt2 + 8685)s” + [576R” 

+ (3488~’ - 3888)Rt3 - 13524~‘R‘I~‘  + 576Rr6 

+ (3168 - 432~’ )R’~c ’  + 5300~’~R’~}/518400 

L ,  = 2 El(+’ = (R’s~  + 2 ~ 2  + 2R” - 2)/(4R’) 
i 

- x[(Rr2 - 3)s2 + 4R‘c2 + 2Ri3 + 2R’]/72 

+ x2[(9RI4 - 154Rt2 + 165)~2 + (54Rt3 - 262R’)c2 

(A1.10) 

+ 18Rt5 - 50Rr3 - 68Rt]/2l600 (Al .  11) 
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Lll  - = E l l ( i ) x i  = -x[(28Rt3 - 112R’)s4 + (-4Rt4 + 81Rt2 - 64)c4 
i - 

+ (-112Rt3 + 224R’)sz + (32Rr4 - 192Rt2 + 256)~2 - 36Rt4 
+ l l l R r 2  - 192]/(1152R’2) + x2[(6112Rt5 - 75444Rt3 + 159168R’)s4 
+(-656Rt6 +27368Rt4- 137349RI2 +91200)c4 + (640R” -34688R” 
+ 217152Rt3 - 318336Rt)s2 + (7168R6 - 99200Rt4 + 357120RI2 
- 3648OO)cz + 640Rt8 - 16208Rt6 + 98496Rr4 - 219771Rt2 
+ 273 600]/(1036800Rt2) (A1.12) 

Lo, - LoLl = Eol(Z)xi = x[(20Rt2 - 24)S4 + (-4Rt3 + 37R’)c4 + (32Rt2 + 48)~2 
i 

+ 32R’c2 +28Rr3 - 69Rr]/(1152R’) -x2[(4800Rt4 -35 844R” +27072)~4 
+(-656Rr5+ 16936Rr3 -45417Rt)c4 +(5568Rt4-15936Rr2 -54144)~2 
+(-640Rt5+12416Rt3 -24576Rt)c2 -640R” + 11952R’5-50016R’3 
+ 69993Rt]/(1036800R’) (A1.13) 

ML = EM(i)x’ = -1 + x[Rt2(2A;R’ + 3)]/6 - x2[Rt4(4A; + 5)]/120 
i 

+ x3[Rt6(6A; + 7)]/5040 (A 1.14) 

x = Ec(i)x’ = 1 + X [ Y  - 1/(4A)] + x ’ { [Y  - 1/(4A)I2 - 1/(48A)} - x 3 { [ ~  - 
i 

+ [ y  - 1/(4A)]/(24A) + 1/(360A)}. 
Let 
E(i)  = E,(i) + aoEo(i) + 3(v,E,(i) 

 ED(^) = c U ~ E ~ ( i )  + 6ao~~1Eo,( i )  9a:Ell(i) 
then 
(1 - F(x ) ) /x  = FIX + Fzx + F3x2 
F1 = 2E(1) - Ec(1) 
F2 = 2[E(2) + E(l)EC(l)] - Ec(2) - E(1)’ - 4AED(1) 

F3 = 2 M 3 )  + W)[EC(2)  - E(2)I + E(2)Ec(1)) - EC(1>E(V - E d 3 1  
- 4A[ED(2) - ED(1)/12]. 

For large values of q’ the following expressions have been derived: 
lim Lo = -s’[3 sin(q’R’)/(q’R’) - cos(q’R’) 

q”” 

and 
lim Li = -3[s’/4 + R’j, (q’R’) sin(R’)]jl (q’R‘)/(q’R’) 

- 8R” ~in(q’R’)/(3q’R’)]/(4q’~R’)~ 

q- 

1/ (4~)1  

(A1.15) 

(Al .  16) 
(Al .  17) 

(A1.18) 
(A1.19) 

(A1.20) 

(Al.21) 

+ 4[s‘/4 + 2R’jl(q’R’) sin(R’)]jo(q’R’)/(9qt2). (A1.22) 

Appendix 2. Electron-electron interactions 

In this appendix we present a very simple approximation to the electron-gas local field 
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Q)LF(q), which works well for most calculations of the physical properties of metals. 
Taylor (1978) has pointed out the adequacy of the local-density approximation (LDA) to 
the local field, the LDA being an approximation whereby q L F ( q )  is replaced by qLF(O)  

for all q. In this paper he suggested the use of qLF(0) derived from the Nozieres and 
Pines (1958) approximation to the electron-gas correlation energy. Here we provide a 
much better representation of the correlation energy based on the work of Vosko et a1 
(1980) (VWN), who have provided a detailed analysis of recent work on the electron-gas 
energy. 

The dielectric function for the interacting electron gas can be written in the form 

4 q )  = 1 + [e2/(&oq2>ln(q> (A2.1) 

where the polarizability n(q) is related to Q)LF(q) by the expression 

n(q) = nO(q)/[l - e2qLF(q)nO(q)/E01. (A2.2) 

n(q) is the polarizability for the non-interacting electron gas. Taylor (1978) has sug- 
gested the following approximation for Q)LF(O): 

q L F ( O )  = - (1 - In 2)A/2I/(W (A2.3) 

where A = l / ( n a & F )  = rs/6.064, a. is the Bohr radius and rs is the radius of a sphere 
containing one electron. In the following we show that a better approximation to q L F ( 0 )  

is 
(A2.4) 

To understand how we reached this conclusion it is useful to remember that q L F ( 0 )  is 
related to the ground-state energy of the electron gas through the compressibility 
theorem (see e.g. Geldart and Vosko 1966). Using that theorem, and the well known 
expressions for the kinetic and exchange energies of the electron gas, it is straightforward 

q L F ( O )  = [1 - (1 - In 2)A/(1 + rs)1/3]/(4k$). 

to show that 

q L F ( O )  = [1 - (1 - ln2>AFcI/(4k2F> 
where the correlation factor 

Fc = rs aEc/ars = (rs/3) a(rs aE,/ar,)/ar,. 

E ,  = X ~ E ~ / [ ~ ( I  - In 211. 

rs aEC/ars = (1 + b , x ) / P ( x )  

E is related to Ec, the correlation energy of the electron gas, by 

From VWN we obtain 

k d 3 )  a(rsEc/ars)/ars = x{b,  - (1 + b1x) [dP(x)/dx1/2)/P(x) 
where 

and 
P ( x )  = 1 + b l x  + b2x2 + b3x3 

bl  = 9.81379, b2 = 2.882224 and b3 = 0.736411. 

Note that, using equations (A2.4)-(A2.6), 
lim q L F ( 0 )  = [l + A ( l  - In 2)]/(4k$). 
r+ 0 

(A2.5) 

(A2.6) 

(A2.7) 

(A2.8) 

(A2.9) 

(A2.10) 

This is precisely the result corresponding to the Gell-Mann and Brueckner (1957) exact 
expression for Ec in the small-rs limit. 
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Figure 3. The correlation factor Fc as a function of r,. The full curve is Fc calculated from 
the VWN theory, equations (A2.5), and the brokencurveis Fcin the approximationin (A2.3). 
The Nozieres and Pines (1958) approximation to Ec gives Fc = 0.5, independent of rs .  

We have calculated Fc as a function of rs using equations (A2.6)-(A2.9) and plotted 
the results in figure 3 and compared them with the function 1/( 1 + rs)1/3. As can be seen, 
the function gives a very good approximation to Fc over the full range of rs, a significant 
improvement over the Nozieres-Pines result for which Fc = 1 for all rs. Hence we 
conclude that the local field given by equation (A2.4) is distinctly better but just as 
simple to use as equation (A2.3). 

Additionally, it can be shown by integrating equation (A2.5) that (equations (4.3) 
and (4.4) of VWN) (where Ec is in hartrees): 

Ec = A[ln[x2/X(x)] + (2b/Q) tan- ' [Q/ (b  + b)] - [bxo/X(x)]{ln[(x - X ~ ) ~ / X ( X ) ]  

+ 2[(b + 2xo)/Ql tan-'[Q/@ + b)l>II (A2.11) 

where 

A = (1 - In 2)/n2 (A2.12) 

x = (rS)'l2 (A2.13) 

X(x) = x2 + bx + c (A2.14) 

Q = ( 4 ~  - b2)"' (A2.15) 

X O  = -0.409286 b = 13.0720 c = 42.7198. (A2.16) 

Equation (A2.11) is used for the correlation contribution to the exchange-correlation 
energy E,,-[no] in equation (2.19). Using the definition of Fc in terms of the derivatives 
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of Ec with respect to rs,  it can also be shown that the term in (2.19) which varies as the 
compressibility of the homogeneous electron gas (energy in hartrees) is 

0.5ZQ2d2UEG/dQ2 = 0.52{1 - A [ l  + A(1 - ln2)Fc]}k$/3. (A2.17) 
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